

0

1

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3

3.1

3.2

3.3

3.4

4

4.1

4.2

4.3

4.4

5

5.1

6

6.1

7

7.1

7.2

7.3

Table	of	Contents
Introduction

1.	HMI	Framework	Introduction

2.	How	to	use	local	HMI

2.1	Serial

2.2	RS485

2.3	Ethernet

2.4	Task	Manager

2.5	MYIR	Support

2.6	System	Info

2.7	Database

2.8	Camera

3.	Local	HMI	Application	Development

3.1	Create	Development	Environment

3.2	Compiling	HMI	Applications

3.3	Running	HMI	Applications

3.4	Add	Application	To	HMI

4.	How	to	use	Web	HMI

4.1	Serial

4.2	RS485

4.3	Ethernet

4.4	MYIR	support

5.	Web	HMI	Application	Development

5.1	Add	Runtime	Library	to	i.MX6UL	Series	Boards

6.	MEasy	HMI	Applications	Integration

6.1	Integrate	MEasy	HMI	Application	on	i.MX6UL	Series	Development	Boards

7.	DBUS	API	Introduction

7.1	LED

7.2	Serial

7.3	RS485

2

7.4

7.5

8

7.4	CAN

7.5	Connman

Appendix	Warranty	&	Technical	Support	Services

3

MEasy	HMI	V1.0	Development	Guide

Introduction

This	article	mainly	describes	how	to	build	and	run	MEasy	HMI	V1.0	applications	on	the
development	boards	of	 	MYiR	,	including	the	development	environment	setup,	source	code
compilation,	instance	analysis	of	MEasy	HMI	applications,	DBUS	library	API	introduction.

This	document	is	suitable	for	embedded	linux	development	engineers	QT,	Python	Web-backend
and	front-end	development	engineers	with	certain	development	experience.

Version	History:

Version Description Time

V1.0 Initial	Version 2018.5.1

V1.1 Initial	Version 2018.12.20

Hardware	Version:

The	Document	v1.0	is	applicable	to	mir	AM437X,	AM335X,	i.mx6ul	series	development
boards.	The	specific	information	is	subject	to	the	release	package	of	the	corresponding
products.
The	Document	v1.1	is	applicable	to	mill	myd-y6ulx-hmi	series	development	board.	The
specific	information	is	subject	to	the	release	package	of	the	corresponding	product.

Note:	The	default	password	for	root	of	the	embedded	Linux	system	is	not	set.

Introduction

4

1.	HMI	Framework	Introduction

MEasy	HMI	is	a	set	of	human-machine	interfaces	which	contains	a	local	HMI	based	on	QT5	and
a	Web	HMI	based	on	Python2	back-end	and	HTML5	front-end.	It	runs	on	development	boards
with	LCD,	touch	panel,	ethernet	and	so	on.	The	dependency	software	includes	dbus,	connman
and	QT5	applications,	python,	tornado	and	other	components.

MEasy	HMI	block	diagram	is	shown	as	below：

Figure	1-1	MEasy	HMI	Framework

D-Bus	is	an	advanced	inter-process	communication	mechanism	that	is	provided	by	the
freedesktop.org	project	and	is	distributed	under	the	GPL	license.	The	main	purpose	of	D-Bus	is	to
provide	communication	for	processes	in	the	Linux	desktop	environment,	and	to	pass	Linux
desktop	environment	and	Linux	kernel	events	as	messages	to	the	process.

More	details	about	dbus	can	be	found	here	https://www.freedesktop.org/wiki/Software/dbus/

The	MEasy	HMI	uses	D-Bus	as	the	access	interface	for	the	QT	application	and	the	underlying
hardware.	The	MYIR	provides	a	complete	set	of	control	and	communication	interfaces	for
RS232,	RS485,	CAN,	and	LED	hardware	and	encapsulates	the	interface	into	a	library	for	external
use	based	on	D-BUS	Method	and	Signal	(Chapter	7	describes	these	methods	and	Signal).

Connman	is	software	for	managing	network	devices	running	embedded	linux	devices.	Connman
is	a	fully	modular	system	that	can	be	expanded	by	plug-in	to	support	the	management	of

1.	HMI	Framework	Introduction

5

https://www.freedesktop.org/wiki/Software/dbus/

Connman	is	software	for	managing	network	devices	running	embedded	linux	devices.	Connman
is	a	fully	modular	system	that	can	be	expanded	by	plug-in	to	support	the	management	of
EtherNet,	WIFI,	3G/4G,	Bluetooth	and	other	network	devices.	.

For	more	details	on	Connman,	please	refer	to	https://01.org/en/node/2207

The	MEasy	HMI	uses	Connman	as	the	EtherNet	access	interface	to	manage	EtherNet	by	calling
the	D-bus	based	Method	and	Signal	provided	by	the	connman	service	(Chapter	7	introduces	these
methods	and	signals).

The	directory	structure	of	MEasy	HMI	is	shown	on	target	boards	as	below.	They	will	be
introduced	in	the	following	sections	in	detail.

/

├──	home

│			└──	myir

│							├──	mxapp

│							├──	mxbackend

│							├──	mxcan

│							├──	mxinfo

│							├──	mxled

│							├──	mxnet

│							├──	mxrs485

│							├──	mxserial

│							├──	mxsupport

│							└──	mxtaskmanager

└──	usr

				├──	bin

				│			├──	psplash

				│			└──	psplash-write

				├──	lib

				│			├──	fonts

				│			│			└──	msyh.ttc

				│			├──	girepository-1.0

				│			├──	gobject-introspection

				│			├──	libgirepository-1.0.la

				│			├──	libgirepository-1.0.so

				│			├──	libgirepository-1.0.so.1

				│			├──	libgirepository-1.0.so.1.0.0

				│			└──	python2.7

				└──	share

								├──	applications

								├──	myir

								│			├──	mxde.xml

								│			├──	settings.ini

								│			├──	board_cfg.json

								│			└──	www

1.	HMI	Framework	Introduction

6

https://01.org/en/node/2207

								│							├──	application.py

								│							├──	handler

								│							├──	README.md

								│							├──	server.py

								│							├──	statics

								│							└──	template

								└──	pixmaps

1.	HMI	Framework	Introduction

7

2.	HMI	Introduction

This	section	mainly	introduces	the	details	of	the	use	and	use	of	each	APP	in	the	MEasy	HMI.

Software	Environment：

u-boot
linux-4.1.x
File	system	with	QT5	operating	environment
MEasy	HMI	V1.1	application

The	above	software	has	been	programmed	into	the	corresponding	development	board.

Hardware	Environment：

MY-TFT070CV2	capacitive	screen
MYD-Y6ULX-HMI	Board

The	default	factory	program	only	supports	the	MY-TFT070CV2	capacitive	screen.

Hardware	connection	method:

Table	2-1	Development	board	display	interface
|	Board	|	LCD	Interface	|	|	:---:	|	:---：|	|	MYD-Y6ULX-HMI	|	J9	LCD_16bit	|

2.	How	to	use	local	HMI

8

2.1	Serial

This	example	shows	how	to	use	the	serial	port	application	in	MEasy	HMI	to	configure	the	serial
port	device	of	the	development	board	and	serial	port	to	send	and	receive	data	test.	For	details,
please	refer	to	the	source	code	mxserial.

Software	Environment：

Serial	Application

Hardware	Environment：

One	MYIR	development	board	with	serial	port
PC	with	serial	assistant	software

Table	2-1-1	Development	board	serial	list

|	Board	|	Interface	|	Data	Cable	|	|	:---：	|	:---:	|	:---:	|	|	MYD-Y6ULX-HMI	|	J8的PIN3、PIN4|	杜
邦线	|

UI	Description：

Figure	2-1-1	Local	serial	port	test	UI

Test	steps:

Use	a	connection	cable	to	connect	the	USB	port	on	the	PC	and	the	serial	port	on	the
development	board.

Open	the	PC	serial	port	assistant	software,	set	the	serial	port	parameters	and	open	the	serial
port.

2.1	Serial

9

Open	the	serial	port	application	in	MEasy	HMI,	set	the	same	serial	port	parameters	as	the
PC	and	open	the	serial	port.

Send	data	on	the	PC	and	the	development	board	respectively,	and	then	see	if	the	data	can	be
received	on	both	sides.

2.1	Serial

10

2.2	RS485

This	routine	demonstrates	how	to	use	the	RS485	application	in	MEasy	HMI	to	configure	the
RS485	device	and	RS485	transceiver	data	test	of	the	development	board.	For	details,	refer	to	the
source	code	mxrs485.

Software	Environment：

RS485	Application

Hardware	Environment：

Two	development	boards	with	RS485	interface
Data	cable	connects	the	RS485	interface	of	two	boards，485A<->485A，485B<->485B，
GND<->GND.

Table	2-2-1	Development	board	RS485	interface	list

Board Interface Data	Cable

MYD-Y6ULX-HMI J8的PIN3、PIN4 杜邦线

UI	Description：

Figure	2-2-1	Development	board	RS485	configuration

Test	steps:

Connecting	RS485	Interface	of	Two	Development	Boards	with	DuPont	Cable

Start	the	RS485	applications	in	the	MEasy	HMI	in	their	respective	development	boards

2.2	RS485

11

Configure	the	RS485	configuration	group	box	parameters	of	the	development	board,	the	port
may	be	different,	to	ensure	that	the	two	development	board	baud	rate,	parity,	data	bits	and
stop	bits	are	consistent.

Click	the	Open	button,	and	then	send	and	receive	data	on	the	two	development	boards.

2.2	RS485

12

2.3	Ethernet

This	example	shows	how	to	use	the	Ethernet	application	in	the	MEasy	HMI	to	configure	the
development	board's	network	port	and	test	network	port	connectivity.	For	details,	refer	to	the
source	code	mxnet.

Software	Environment：

Ethernet	Application

Hardware	Environment：

One	router	that	can	provide	DHCP	service

One	board	with	Ethernet	interface

Table	2-3-1	Development	board	Ethernet	port	list

Board Interface

MYD-Y6ULX-HMI CN1

MYD-Y6ULX-HMI-4GEXP CN1

UI	Description：

Figure	2-3-1	Development	board	network	port	configuration

2.3	Ethernet

13

Figure	2-3-2	Development	board	port	test

Tab	page:	Function	page	corresponding	to	network	card

IP	Information	Page:	Contains	settings	group	box	and	information	group	box

Ping	Test:	Test	Network	Connectivity	Pages

Note:

1.	 The	tab	page	is	dynamically	created.	If	you	do	not	see	any	interface	without	plugging
in	the	network	cable,	insert	several	network	cables	into	the	network	port.	Several	tab
pages	will	be	created.	Similarly,	removing	the	cable	will	delete	the	corresponding	tab.
Bookmark	page.

2.	 When	the	IP	acquisition	mode	is	switched	to	Manual	mode,	the	IP	address,	subnet
mask,	and	gateway	input	boxes	will	pop	up,	which	can	be	used	to	configure	IP
manually.

3.	 In	the	manual	mode	of	IP	acquisition,	click	the	IP	address,	subnet	mask,	and	the	input
box	edit	box	of	the	gateway	will	pop	up	the	soft	keyboard.	After	entering	the	data,	you
need	to	click	the	blue	Close	button	on	the	soft	keyboard	to	close	the	soft	keyboard.
Click	the	OK	button	to	configure	the	IP	address,	subnet	mask,	and	gateway
information.	After	the	configuration	is	complete,	the	data	in	the	edit	box	is
automatically	cleared.

Test	steps:

Insert	the	network	cable	into	the	network	port	of	the	development	board.

2.3	Ethernet

14

Open	the	Ethernet	test	application	in	the	MEasy	HMI	and	check	whether	the	information
group	box	has	successfully	obtained	the	IP	information.

Switch	to	Ping	test	page	to	test	network	connectivity.

2.3	Ethernet

15

2.4	Task	Manager

This	routine	demonstrates	how	to	use	the	task	manager	application	in	the	MEasy	HMI	to	view
system	resource	status	and	process	information.	For	details,	refer	to	the	source	mxtaskmanager.

Software	Environment：

Task	Manager	Application

Hardware	Environment：

Any	development	boards	supporting	MEasy	HMI

UI	Description：

Figure	2-4-1	Development	board	performance	information

2.4	Task	Manager

16

Figure	2-4-1	Development	board	process	information

Performance	Information	Page:	Contains	current	processor	usage,	current	memory	usage,	and
current	storage	space	usage.

Process	information	page:	Displays	all	processes	and	process	status	information	running	on	the
current	development	board.

Note:	The	storage	space	only	shows	the	size	of	the	root	partition	and	does	not	represent	the
space	of	the	entire	storage	device.

Test	steps:

Open	the	Task	Manager	application	in	the	MEasy	HMI	to	view	related	performance
information	and	process	information.

2.4	Task	Manager

17

2.5	MYIR	Support

This	routine	demonstrates	how	to	use	the	MYIR	Support	application	in	MEasy	HMI	to	obtain
contact	information	with	us.	For	details,	please	refer	to	the	source	code	mxsupport.

Software	Environment：

MYIR	Support	Application

Hardware	Environment：

Any	development	boards	supporting	MEasy	HMI

UI	Description：

Figure	2-5-1	Development	Board	Technical	Support	Information

Use	steps:

Open	the	MYIR	Support	application	in	MEasy	HMI.

2.5	MYIR	Support

18

2.6	System	Info

This	routine	demonstrates	how	to	use	the	system	information	application	in	the	MEasy	HMI	to
view	the	hardware	and	software	information	of	the	development	board.	For	details,	refer	to	the
source	code	mxinfo.

Software	Environment：

System	Info	Application

Hardware	Environment：

Any	development	boards	supporting	MEasy	HMI

UI	Description：

Figure	2-6-1	Development	board	system	information

Use	steps:

Open	the	System	Info	application	in	MEasy	HMI.

2.6	System	Info

19

2.7	Sqlite3

This	routine	demonstrates	how	to	use	the	MYIR	Support	application	in	MEasy	HMI	to	obtain
contact	information	with	us.	For	details,	please	refer	to	the	source	code	mxsupport.

Software	Environment：

Sqlite3	Application

Hardware	Environment：

Any	development	boards	supporting	MEasy	HMI

UI	Description：

Figure	2-7-1	Development	Board	Technical	Support	Information

Use	steps:

Open	the	MYIR	Support	application	in	MEasy	HMI.

2.7	Database

20

2.8	Camera

This	routine	demonstrates	how	to	use	the	MYIR	Support	application	in	MEasy	HMI	to	obtain
contact	information	with	us.	For	details,	please	refer	to	the	source	code	mxsupport.	It	is
recommended	to	use	a	USB	camera	to	test.

Software	Environment：

Camera	Application

Hardware	Environment：

Any	development	boards	supporting	MEasy	HMI

UI	Description：

Figure	2-8-1	Development	Board	Technical	Support	Information

Use	steps:

Open	the	MYIR	Support	application	in	MEasy	HMI.

2.8	Camera

21

3.	HMI	Application	Development

This	chapter	focuses	on	how	to	build	a	development	and	compilation	environment	for	MEasy
HMI,	designed	to	help	users	develop	their	products	better	and	faster	through	QT5.	Including	the
establishment	of	embedded	QT5	runtime	environment,	the	construction	of	qmake	compiler
environment,	the	installation	and	configuration	of	QT	Creator	and	the	compilation	and	operation
of	MEasy	HMI	applications.

3.	Local	HMI	Application	Development

22

3.1	Setting	up	the	environment

The	environment	here	means	the	QT5	runtime	environment	on	the	development	board	and	the
qmake	and	cross-compiler	on	the	ubuntu	host	side.	The	qmake	and	cross-compiler	for	AM335X
and	AM437X	on	the	ubuntu	host	are	compiled	by	buildroot.	For	details,	please	refer	to	the
following	table	sections.	The	QT5	environment	of	the	i.MX6UL	series	is	compiled	using	yocto.
For	specific	operations,	refer	to	the	software	development	manual	of	the	corresponding	product.

Table	3-1-1	Compile	QT5	for	i.MX6UL	Series	Development	Board

Board Docment	Section

MYD-
Y6ULX

MYD-Y6ULX-LinuxDevelopmentGuide_zh	3.3	Build	File	System-Build
system	image	with	Qt5	package

MYS-
6ULX

MYS-6ULX-LinuxDevelopmentGuide_zh.pdf	3.3	Build	File	System-Build
system	image	with	Qt5	package

Table	3-1-2	Install	QT	Creator

Board Docment	Section

MYD-Y6ULX-
HMI

MYD-Y6ULX-HMI	Linux	Development	Guide.pdf	5.1	Install	QT
Creator

MYD-Y6ULX MYD-Y6ULX-LinuxDevelopmentGuide_zh	5.1	Install	QT	Creator

MYS-6ULX MYS-6ULX-LinuxDevelopmentGuide_zh.pdf	5.1	Install	QT	Creator

Table	3-1-3	i.MX6UL	series	development	board	configuration	QT	Creator

Board Docment	Section

MYD-Y6ULX-
HMI

MYD-Y6ULX-HMI	Linux	Development	Guide.pdf	5.2	Config	QT
Creator

MYD-Y6ULX MYD-Y6ULX-LinuxDevelopmentGuide_zh	5.2	Config	QT	Creator

MYS-6ULX MYS-6ULX-LinuxDevelopmentGuide_zh.pdf	5.2	Config	QT	Creator

3.1	Create	Development	Environment

23

3.2	Compiling	HMI	Applications

This	chapter	mainly	describes	the	compilation	process	of	MEasy	HMI.

We	provide	MEasy	HMI	source	code	located	in	the	/04-Source/HMI-QT5-DEMO.tar.bz2
directory	on	the	CD-ROM.	Copy	mxde.tar.gz	to	the	ubuntu	directory	working	directory	and
extract	it.

The	following	describes	how	to	import	mxde	project	into	Qt	Creator,	open	QT	Creator,	click
	File	-> 	Open	File	or	Project		in	the	menu	bar	and	then	pop	up	the	box	as	shown	in	Figure	3-
2-1,	enter	mxde	project	directory,	click	 	mxde.pro		and	click	the	 	Open		button	to	open	the	mxde
project.

Figure	3-2-1	Project	selection	box

After	opening	the	project,	enter	the	configuration	page,	select	the	compilation	tool	chain,	directly
select	the	kits	configured	in	Chapter	3.1,	click	the	 	Configure	Project		button,	and	then	enter	the
project	directory.

3.2	Compiling	HMI	Applications

24

Figure	3-2-2	Config	kits

After	entering	the	mxde	project,	you	can	see	the	directory	structure	of	the	entire	project,	as	shown
in	Figure	3-2-3.	Then	you	can	compile	the	project,	before	compiling	can	choose	to	compile	the
output	mode,	here	we	choose	Release	mode,	and	then	you	can	select	the	right	lower	corner	of	the
small	hammer	icon	to	compile	the	entire	project,	or	by	clicking	on	the	menu	bar	 	Build-	>
	Build	Project	"mxde"		to	compile	the	entire	project.

Figure	3-2-3	Project	Directory

The	compilation	process	can	be	seen	from	the	bottom	of	the	Table	column	 	4	Compile	Output	,
as	shown	in	Figure	3-2-4.

3.2	Compiling	HMI	Applications

25

Figure	3-2-4	Compile	Output

The	errors	and	warnings	that	appear	in	the	compilation	can	be	seen	from	the	bottom	of	the	Table
column	 	1	Issues	,	as	shown	in	Figure	3-2-5.	If	the	compile	error	can	be	output	from	here	for
analysis	problems.

Figure	3-2-5	Issues	Output

3.2	Compiling	HMI	Applications

26

3.3	Running	HMI	Applications

This	chapter	mainly	describes	the	running	process	of	MEasy	HMI.

After	the	compilation	is	complete,	the	compiled	program	can	be	uploaded	to	the	development
board	for	running.	There	are	two	methods	for	uploading	the	program	to	the	development	board.

Method	One:	Direct	Upload	Operation	by	Configuring	Qt	Creator

Configuring	Qt	Creator	remote	devices

By	selecting	the	menu	bar	 	Tools->Options->Devices	,	select	 	myir	(default	for	Generic
Linux)		in	Device,	enter	the	development	board	IP	in	the	Type	Specific	field	(you	need	to	log	in
to	the	development	board	through	the	serial	port	to	view),	user	name,	and	do	not	need	to	fill	in
the	password.	As	shown	in	Figure	3-3-1.

Figure	3-3-1	Device	Configuration

Test	remote	device	connectivity

After	the	input	is	complete,	click	the 	Apply		button,	and	then	click	the	 	Test	button	on	the	right
side	will	automatically	pop	up	the	test	connection	window	when	Device	test	finished	successfully.
The	word	means	the	test	connection	is	successful.	As	shown	in	Figure	3-3-2.

3.3	Running	HMI	Applications

27

Figure	3-3-2	Equipment	testing

Specify	the	program	to	run

After	the	test	connection	is	successful,	return	to	the	main	interface	of	Qt	Creator.	To	specify	the
program	you	want	to	run,	select	the	program	that	needs	to	run	as	mxapp.	As	shown	in	Figure	3-3-
3.

3.3	Running	HMI	Applications

28

Figure	3-3-3	Select	the	program	to	run

Specify	the	parameters	for	the	program	to	run

After	specifying	the	program	to	be	run,	you	also	need	to	specify	the	program's	operating
parameters.	Click	 	Projects->mxde->Build	&	Run	->myir->Run		to	pull	down	to	the	Run
configuration	column	and	write	in	the	Arguments	input	box	--platform	linuxfb,	which	completes
the	specification	of	the	program's	operating	parameters.	As	shown	in	Figure	3-3-4.

Figure	3-3-4	Program	operating	parameters

Kill	the	running	MEasy	HMI	related	program	on	the	development	board

After	specifying	the	running	parameters,	you	need	to	log	in	to	the	development	board	and	kill	the
currently	running	MEasy	HMI	related	program.	The	operation	is	as	follows:

3.3	Running	HMI	Applications

29

	#	killall	mxbackend	

	#	killall	mxapp	

Upload	the	program	to	the	development	board	and	run

Click	the	Run	button	in	the	lower	left	corner,	or	click	the	menu	bar	 	Build->Run		to	upload
mxapp	to	the	development	board	and	run	it.	On	the	7-inch	screen,	you	can	see	the	MEasy	HMI
interface.	The	running	debugging	information	can	be	seen	in	3	Application	Output,	as	shown	in
Figure	3-3-5.

Figure	3-3-5	Application	Output

Note:	If	you	need	to	run	mxserial	mxrs485	mxcan	mxled	these	applications,	you	need	to	run
mxbackend	first,	but	also	need	to	ensure	that	these	applications	and	mxbackend	connection
dbus	bus	to	the	same	address.	The	method	of	operation	is	as	follows:

1.Sets	the	DBUS_SESSION_BUS_ADDRESS	environment	variable	currently	running	on	the
serial	terminal.

#	dbus-launch	

DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-qb40GAMAnL,guid=e3ab6092d0c14d9b1

38e64435ae0b6b0

DBUS_SESSION_BUS_PID=655

#	export	DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-qb40GAMAnL

2.Run	the	daemon.

#	cd	/home/myir/

#	./mxbackend

3.Configure	the	dbus	return	bus	DBUS_SESSION_BUS_ADDRESS	environment	variable	to	run
the	program	in	Qt	Creator.

Take	mxled	as	an	example	to	illustrate	the	configuration	in	Qt	Creator.	Click	on	the	left
	Projects->	mxde->	Build	&	Run->	myir	->	Run	->	Run	configureation		Select	mxled	here,	in
the	Arguments	input	box	--platform	linuxfb,	in	the	Run	Enviroment,	click	the	Details	button,	and

3.3	Running	HMI	Applications

30

then	click	the 	Add		button,	The	Variable	column	fills	in	the	DBUS_SESSION_BUS_ADDRESS,
Value	_column	fills	in	the	value	created	in	the	first	step	dbus-launch	above
_unix:abstract=/tmp/dbus-qb40GAMAnL.	As	shown	in	Figure	3-3-6.

Figure	3-3-6	Application	dbus	environment	variable	configuration

4.Click	on	the	 	Run	button	in	the	lower	left	corner,	or	click	on	the	menu	bar	 	Build->Run		to
upload	mxled	to	the	development	board	and	run.

Method	two:	directly	copy	the	compiled	program	to	the	development	board

Click	the	 	Projects	button	on	the	left,	you	can	see	the	project's	compilation	and	configuration.
The	Build	directory	in	the	General	column	shows	the	path	of	the	mxde	project's	compiled	output	.
You	can	copy	the	program	directly	to	the	development	board	from	here.	As	shown	in	Figure	3-3-
7.

3.3	Running	HMI	Applications

31

Figure	3-3-7	Project	compilation	output

Open	the	compile	output	directory,	enter	the	mxapp	directory,	and	copy	the	mxapp	application	to
the	development	board.	The	method	of	operation	is	as	follows:

#	./mxapp	--platform	linuxfb

===	w=	800	h=480

800	300	m_default_action_height

800	60	m_other_action_height

800	180	m_default_content_height

800	420	m_other_content_height

800	480	

Could	not	parse	application	stylesheet

800	300		of	HomeActionWidget	

libpng	warning:	iCCP:	known	incorrect	sRGB	profile

800	180		of	HomeContentWidget	

libpng	warning:	iCCP:	known	incorrect	sRGB	profile

libpng	warning:	iCCP:	known	incorrect	sRGB	profile

QLayout::addChildLayout:	layout	""	already	has	a	parent

QWidget::setLayout:	Attempting	to	set	QLayout	""	on	HomeContentWidget	"",	which	al

ready	has	a	layout

QLayout:	Attempting	to	add	QLayout	""	to	HomeContentWidget	"",	which	already	has	a

	layout

QWidget::setLayout:	Attempting	to	set	QLayout	""	on	HomeContentWidget	"",	which	al

ready	has	a	layout

800	60		of	BOXA	

libpng	warning:	iCCP:	known	incorrect	sRGB	profile

800	420		of	BoxContentWidget	

loadApplicationWidgets

libpng	warning:	iCCP:	known	incorrect	sRGB	profile

libpng	warning:	iCCP:	known	incorrect	sRGB	profile

libpng	warning:	iCCP:	known	incorrect	sRGB	profile

libpng	warning:	iCCP:	known	incorrect	sRGB	profile

3.3	Running	HMI	Applications

32

3.4	Add	application	to	HMI

This	chapter	focuses	on	the	application	of	the	user	added	to	the	MEasy	HMI.

If	the	user	needs	to	display	the	user's	application	in	the	MEasy	HMI,	it	only	takes	a	few	steps	to
complete	the	operation.

Create	a	user's	Qt	Widgets	Application	type	application	named	user_app,	use	the	above
compiler	environment	compiled	and	copied	to	the	development	board	/home/myir	directory
below
Create	a	192*192	resolution	icon	user_app.png	for	this	application,	copy	it	to	the
development	board_	/usr/share/pixmaps	_directory
Create	a	desktop	configuration	file	belonging	to	the	user	in	the	development	board
/usr/share/applications	directory.	Start	with	a	number	such	as	09_user_app.desktop.	The
contents	of	the	configuration	file	are	as	follows:

[Desktop	Entry]

Name=user_app

Name[zh_TW]=⽤户应⽤
Name[zh_CN]=⽤户应⽤

Type=Application

Icon=/usr/share/pixmaps/user_app.png

Exec=/home/myir/user_app	--platform	linuxfb

Terminal=false

MimeType=application/x-directory;inode/directory;

Categories=System;FileTools;Utility;Qt;FileManager;

After	completing	the	above	steps,	restart	the	development	board	and	you	will	see	that	the
user's	application	appears	on	the	MEasy	HMI	interface.

3.4	Add	Application	To	HMI

33

4	Web	HMI	Introduce

This	chapter	mainly	introduces	how	to	use	Web	HMI	to	control	the	development	board
peripherals.

Software	Environment：

u-boot
linux-4.1.x
File	system	with	Python2,	tornado,	python-dbus	and	other	operating	environments
MEasy	Web	HMI	V1.1	Application

Hardwate	Environment：

Prepare	one	of	the	i.MX6UL	series	development	boards

Note：

Preparation:

Before	starting	the	system,	set	up	any	Ethernet	interface	on	the	development	board	to	the	same
subnet	with	the	remote	host.

Web	login

After	the	development	board	is	powered	on	and	the	network	is	connected,	the	serial	port	will
print	the	IP	address	and	port	number	bound	to	the	Web	HMI	backend	service.	The	log	is	as
follows:

Development	server	is	running	at	http://192.168.1.100:8090/login

Open	 	http://192.168.1.100:8090/login		(The	IP	that	is	filled	in	here	is	based	on	the	actual	IP
address	of	the	development	board)	in	a	browser	to	login,	the	user	name	and	password	are	set	to
	admin		as	default.

4.	How	to	use	Web	HMI

34

Figure4	Web	HMI	Login
Web	language	version

Web	HMI	provides	Chinese	and	English	versions,	the	default	is	English	version,	in	the	upper
right	corner	of	the	interface	there	is	a	button	to	switch	languages	(switching	the	language	will
automatically	close	the	previously	open	module	device).

Synchronization

Local	HMI	and	Web	HMI	can	open	the	same	device	at	the	same	time,	they	operate	on	the	same
device	handle	with	the	same	configuration.	If	the	local	HMI	opens	the	RS232	device	first,	the
Web	HMI	will	read	the	configuration	set	by	the	local	HMI	and	vice	versa.	If	the	RS232,	RS485,
CAN	receive	data	from	other	devices,	the	data	can	be	accepted	and	displayed	both	on	the	local
HMI	and	Web	HMI.

4.	How	to	use	Web	HMI

35

4.1	Serial

This	example	shows	how	to	use	Web	HMI	to	configure	the	RS232	on	the	development	board,
and	then	test	the	data	send	and	receive.	For	details,refer	to	the	source	code.

Hardware	Environment：

Hardware	Connections	Reference	Chapter2.1

Select	the	configured	parameters	first,	then	click	the	Open	button
Modify	the	configuration	parameters	will	automatically	turn	off	the	device,	need	to	open
again

Note：

Port	options	in	the	interface	can	be	modified	or	added	in	the	board_cfg.json	configuration	file.
UI：

Figure4-1-1	Web	HMI	Test	RS232

4.1	Serial

36

4.2	Test	RS485

This	example	shows	how	to	use	Web	HMI	to	configure	the	RS485	on	the	development	board,
and	then	test	the	data	send	and	receive.	For	details,refer	to	the	source	code.

Hardware	Environment：

Hardware	Connections	Reference	Chapter2.2

Select	the	configured	parameters	first,	then	click	the	Open	button
Modify	the	configuration	parameters	will	automatically	turn	off	the	device,	need	to	open
again

Note：
Port	options	in	the	interface	can	be	modified	or	added	in	the	board_cfg.json	configuration	file.
UI：

Figure4-2-1	Web	HMI	Test	RS485

4.2	RS485

37

4.3	EtherNet

  This	example	shows	how	to	use	Web	HMI	to	manage	the	network	on	the	development
board.	For	details,refer	to	the	source	code,using	the	pyconnman	component.

Hardware	Environment：

  	Hardware	Connections	Reference	Chapter2.3

The	web	page	can	display	the	network	status	in	real	time.	You	can	also	set	the	network
information.
When	you	modify	the	IP,	you	need	to	pay	attention	to	it.	If	you	modify	the	network	card
used	by	the	web	server,	you	will	be	prompted	to	modify	the	development	board	IP	after
clicking	Confirm.	At	the	same	time,	the	web	service	is	disconnected	and	the	development
board	restarts.

Note：

  The	NIC	tab	page	in	the	interface	is	displayed	only	when	the	network	cable	is
connected,UI：

Figure4-3-1	Web	HMI	EtherNet

4.3	Ethernet

38

4.4	Support

  This	page	provides	information	such	as	our	address	and	contact	information.

Figure4-4-1	Support

4.4	MYIR	support

39

5	Web	HMI	Application	Development

  The	Web	HMI	back-end	service	uses	python2	as	a	development	language	and	was
developed	based	on	tornado4.x.	i.MX6UL	series	development	board	uses	yocto	to	build	the	file
system;	The	details	are	as	follows：

Web	HMI	Application	Directory

├──	application.py

├──	handler

├──	README.md

├──	server.py

├──	statics

└──	template

Web	HMI	Application

  	Start	the	Web	HMI	backend	service	by	adding	the	following	startup	script	during	system
startup.	You	need	to	start	the	DBUS	and	CONNMAN	services	before	starting	the	Web	HMI.

#!/bin/sh

python	/usr/share/myir/init_boardcfg.py	&

if	test	-z	"$DBUS_SESSION_BUS_ADDRESS"	;	then

								eval	`dbus-launch	--sh-syntax`

								echo	"D-Bus	per-session	daemon	address	is:	$DBUS_SESSION_BUS_ADDRESS"

fi

export	DBUS_SESSION_BUS_ADDRESS="$DBUS_SESSION_BUS_ADDRESS"

/home/myir/mxbackend	&

python	/usr/share/myir/www/server.py	&

TS_CALIBRATION_FILE=/etc/pointercal

if	[!	-f	$TS_CALIBRATION_FILE];then

								export	TSLIB_TSDEVICE=/dev/input/touchscreen0

								ts_calibrate

fi

/home/myir/mxapp	--platform	linuxfb	&

For	yocto,	add	the	above	script	to	the	yocto	source	file	fsl-release-yocto/sources/meta-myir-
imx6ulx/recipes-myir/myir-rc-local/myir-rc-local.

5.	Web	HMI	Application	Development

40

  	When	the	application	starts,	it	will	read	the	development	board	configuration	file
/usr/share/myir/board_cfg.json.	The	configuration	file	defines	RS232,	RS485,	CAN
corresponding	device	file	nodes,	dbus	parameters,	system	information,	led	information,	etc.	,
modify	this	configuration	file,	the	Web	will	correspond	to	the	changes	(need	to	restart	the	Web
service).

{

								"board_info":	{

																"rs232":	[

																								"ttymxc1"

],

																"rs485":	[

																								"ttymxc3"

],

																"can":	[

																								"can0"

],

																"led":	[

																								"myc:blue":"cpu0	-	D30		-	Core	Board"

],

																"system":	{

																								"HMI_version":	"MEasy	HMI	V1.0",

																								"linux_version":	"linux-4.1.15",

																								"uboot_version":	"u-boot-2016.03",

																								"gcc_version":	"arm-linux-gcc	5.3.0",

																								"manufacturer":	"MYIR	Electronics	Limited",

																								"board":	"MYD-Y6ULX",

																								"CPU":	"i.MX6ULL",

																								"memory":	"256MB",

																								"storage":	"256MB"

																}

								},

								"dbus_info":	{

																"dbus_name":	"com.myirtech.mxde",

																"dbus_path":	"/com/myirtech/mxde",

																"dbus_interface":	"com.myirtech.mxde.MxdeInterface"

								}

}

5.	Web	HMI	Application	Development

41

5.1	Add	runtime	library	on	i.MX6UL	series	development	board

The	Web	HMI	backend	service	provided	by	our	company	is	developed	using	python.	The
following	Python	library	needs	to	be	added	on	the	i.MX6UL	platform：

-	backports_abc-0.5.tar.bz2

-	certifi-2017.11.5.tar.bz2

-	simplejson-3.8.2.tar.bz2

-	singledispatch-3.4.0.3.tar.bz2

-	pyconnman-0.1.0.tar.bz2

-	tornado-4.5.2.tar.bz2

The	i.MX6UL	platform	uses	yocto	to	easily	add	related	libraries	and	build	systems.	You	can	view
official	Python	support	files	at	the	following	URL.

http://cgit.openembedded.org/meta-openembedded/tree/meta-python

Go	to	the	above	URL	select	recipes-devtools/python,	you	can	see	a	lot	of	.bb	file,	as	follows:

Figure5-1-1	meta	python

5.1	Add	Runtime	Library	to	i.MX6UL	Series	Boards

42

Here	we	can	find	the	documents	we	need,	the	official	resources	are	constantly	updated,	the	names
and	versions	may	not	be	completely	consistent,	according	to	the	actual	situation	to	choose,The
following	list	is	the	software	version	used	by	our	company:

5-1-1	python	library	list

Python	Library bb path

backports_abc-
0.5.tar.bz2

python-backports-
abc_0.4.bb

fsl-release-yocto/sources/meta-
openembedded/meta-python/recipes-
devtools/python

certifi-
2017.11.5.tar.bz2

python-
certifi_2018.1.18.bb	and
python-certifi.inc

fsl-release-yocto/sources/meta-
openembedded/meta-python/recipes-
devtools/python

simplejson-
3.8.2.tar.bz2

python-
simplejson_3.8.2.bb

fsl-release-yocto/sources/meta-
openembedded/meta-python/recipes-
devtools/python

singledispatch-
3.4.0.3.tar.bz2

python-
singledispatch_3.4.0.3.bb

fsl-release-yocto/sources/meta-
openembedded/meta-python/recipes-
devtools/python

tornado-
4.5.2.tar.bz2 python-tornado_4.3.bb

fsl-release-yocto/sources/meta-
openembedded/meta-python/recipes-
devtools/python

pyconnman-
0.1.0.tar.bz2

python-
pyconnman_0.1.0.bb

fsl-release-yocto/sources/meta-
openembedded/meta-python/recipes-
connectivity/python-pyconnman

We	uploaded	these	configuration	files	to	github	for	download.

https://github.com/hufan/yocto-config-bb/tree/master

Some	BB	configuration	files	already	exist	in	the	yocto	source	code.	If	not,	you	need	to	download
them,	after	adding	the	supported	bb	files,	the	necessary	source	code	libraries	will	be	downloaded
from	the	official	network	when	the	system	is	built	and	cross-compiled.	To	enable	these	libraries
to	be	cross-compiled	and	integrated	into	the	file	system,	modify	the	corresponding	file	system
bbappend	file,	execute	this	event	when	executing	the	build	system,	and	add	the	following	in	the
bb	file.

				...

				libxml2	\

				python-lxml	\

				python-certifi	\

				python-simplejson	\

				python-singledispatch	\

5.1	Add	Runtime	Library	to	i.MX6UL	Series	Boards

43

				python-backports-abc	\

				python-pyconnman	\

				python-tornado	\

				...

  Our	company	provides	three	kinds	of	file	system	construction,	corresponding	bb	file	is	as
follows:

5-1-2	i.MX6UL	yocto	System	configuration	table

filesystem bb

core-image-minimal core-image-minimal.bbappend

core-image-base core-image-base.bbappend

fsl-image-qt5 fsl-image-qt5.bbappend

5.1	Add	Runtime	Library	to	i.MX6UL	Series	Boards

44

6	MEasy	HMI	Applications	Integration

In	the	previous	chapter	we	introduced	the	directory	structure	of	the	MEasy	HMI	on	the	target
board,	as	well	as	the	runtime	environment	and	development	process	of	the	local	HMI	and	Web
HMI.	This	chapter	will	focus	on	how	to	integrate	the	MEasy	HMI	application	into	the	target
board	system.	Then	the	MEasy	HMI	starts	up	on	the	development	board. For	details,	refer	to
the	yocto	code	of	04-Source/fsl-release-yocto-hmi.tar.bz2.	This	system	is	built	by	default	when
compiling	the	system	with	yocto.

6.	MEasy	HMI	Applications	Integration

45

6.1	Integrate	MEasy	HMI	Application	on	i.MX6UL	Series
Development	Boards

A	package	in	Yocto	is	placed	in	the	bb	file,	then	a	very	large	number	of	bb	files	integrate	a
recipe,	and	then	many	recipes	form	a	meta	layer.	So,	to	join	a	soft	Package	can	add	a	bb	(bitbake
configuration	file)	below	recipe.	Here's	how	to	add	web-demo	to	your	system,Create	the
following	directory	structure	in	the	directory	fsl-release-yocto/sources/meta-myir-
imx6ulx/recipes-myir:

└──	web-demo

				└──	web-demo.bb

Web-demo.bb	is	the	corresponding	task	to	perform.	The	main	task	is	to	compile	the	code	and
then	integrate	the	software	library	into	rootfs,	using	the	shell	as	the	development

The	web-demo.bb	code	is	as	follows：

DESCRIPTION	=	"web	demo"

DEPENDS	=	"zlib	glibc	ncurses	"

SECTION	=	"libs"

LICENSE	=	"MIT"

PV	=	"3"

PR	=	"r0"

PACKAGES	=	"${PN}-dbg	${PN}	${PN}-doc	${PN}-dev	${PN}-staticdev	${PN}-locale"

PACKAGES_DYNAMIC	=	"${PN}-locale-*"

SRCREV	=	"9b0038497d884db1e11046a8fbc8b219bcd6699c"

SRC_URI	=	"git://github.com/hufan/web-demo-bb;protocol=https;branch=web_server"

LIC_FILES_CHKSUM	=	"file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f

7b4f302"

S	=	"${WORKDIR}/git"

do_compile	()	{

	tar	xvf	cJSON.tar.bz2	

	make

}

do_install	()	{

		install	-d	${D}/usr/share/myir/

		install	-d	${D}/usr/share/myir/www/

		install	-d	${D}/lib/

		install	-d	${D}/usr/bin/

		cp	-S	${S}/*.so*	${D}/lib/

		cp	-r	${S}/web_server/*	${D}/usr/share/myir/www/

6.1	Integrate	MEasy	HMI	Application	on	i.MX6UL	Series	Development	Boards

46

		if	[${MACHINE}	=	"myd-y6ul14x14"]

		then

		install	-m	0755	${S}/board_cfg_mydy6ul.json	${D}/usr/share/myir/board_cfg.json

		elif	[${MACHINE}	=	"myd-y6ull14x14"]

		then

		install	-m	0755	${S}/board_cfg_mydy6ull.json	${D}/usr/share/myir/board_cfg.json

		elif	[${MACHINE}	=	"mys6ul14x14"]

		then

		install	-m	0755	${S}/board_cfg_mysy6ul.json	${D}/usr/share/myir/board_cfg.json

		elif	[${MACHINE}	=	"mys6ull14x14"]

		then

		install	-m	0755	${S}/board_cfg_mysy6ull.json	${D}/usr/share/myir/board_cfg.json

		fi

		install	-m	0755	${S}/mxde.xml	${D}/usr/share/myir/

		install	-m	0755	${S}/settings.ini	${D}/usr/share/myir/

		install	-m	0755	${S}/psplash	${D}/usr/bin/

		install	-m	755	${S}/init_boardcfg.py	${D}/usr/share/myir/

}

FILES_${PN}	=	"/home/myir/	\

											/usr/share/myir/	\

											/usr/share/myir/www/	\

											/usr/share/myir/www/*	\

											/usr/share/myir/*/*	\

											/lib/	\

											/usr/bin/	\

													"

TARGET_CC_ARCH	+=	"${LDFLAGS}"

INSANE_SKIP_${PN}-dev	=	"ldflags"

INSANE_SKIP_${PN}	=	"${ERROR_QA}	${WARN_QA}"

  	The	following	describes	the	system	to	join	qt-demo,	create	the	following	directory	structure
in	the	directory	fsl-release-yocto/sources/meta-myir-imx6ulx/recipes-myir:

├──	qt-demo

			└──	qt-demo.bb

The	qt-demo.bb	code	is	as	follows：

DESCRIPTION	=	"qt	app"

DEPENDS	=	"zlib	glibc	ncurses	"

SECTION	=	"libs"

LICENSE	=	"MIT"

PV	=	"3"

6.1	Integrate	MEasy	HMI	Application	on	i.MX6UL	Series	Development	Boards

47

PR	=	"r0"

LIC_FILES_CHKSUM	=	"file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f

7b4f302"

SRCREV	=	"ba71eadf84c2b57a2a751aae89ac453c7d05bef2"

SRC_URI	=	"	\	

								git://github.com/hufan/web-demo-bb;protocol=https;branch=qt-app	\

										"

S_G	=	"${WORKDIR}/git"

do_install	()	{

						install	-d	${D}/usr/share/myir/

						install	-d	${D}/usr/share/applications/

						install	-d	${D}/usr/share/pixmaps/

						install	-d	${D}/usr/lib/fonts/

						install	-d	${D}/lib/

						install	-d	${D}/home/myir/

						cp	-r	${S_G}/applications/*	${D}/usr/share/applications/

						cp	-r	${S_G}/pixmaps/*	${D}/usr/share/pixmaps/

						cp	-r	${S_G}/msyh.ttc	${D}/usr/lib/fonts/

						cp		-rfav	${S_G}/so/*.so*		${D}/lib/

						cp			${S_G}/qt-app/*		${D}/home/myir/

}

FILES_${PN}	=	"/home/myir/	\

									/usr/share/myir/	\

									/usr/lib/fonts/	\

									/lib/	\

									/usr/share/applications/	\

									/usr/share/pixmaps/	\

													"

#For	dev	packages	only

INSANE_SKIP_${PN}-dev	=	"ldflags"

INSANE_SKIP_${PN}	=	"${ERROR_QA}	${WARN_QA}"

SRC_URI	:	Specify	the	source	file
LIC_FILES_CHKSUM	:	File	and	corresponding	md5	values
do_compile、do_install	:	Perform	bitbake	method,	compile	source	code	and	install	program
to	file	system
FILES_${PN}	:	Add	a	supported	directory
SRCREV	:	Specifies	the	version	of	the	software	to	use.	It	can	be	modified	according	to	the
actual	situation

6.1	Integrate	MEasy	HMI	Application	on	i.MX6UL	Series	Development	Boards

48

Then	you	need	to	add	the	web-demo.bb	task	before	building	the	file	system.	Refer	to	Table	5-1-2
to	modify	the	bbappend	file	of	the	corresponding	file	system	and	add	the	following	content:

				...

				web-demo	\

				qt-demo	\

				...

Finally	start	building	the	system,	such	as	building	a	file	system	with	qt,	then	execute	the
command:	 	bitbake	fsl-image-qt5	

For	the	construction	of	the	file	system,	refer	to	the	Chapter3.3	of	the	document	MYD-Y6ULX-
LinuxDevelopmentGuide_en.pdf	published	by	MYD-Y6ULX.

6.1	Integrate	MEasy	HMI	Application	on	i.MX6UL	Series	Development	Boards

49

7.	DBUS	API	Introduction

This	chapter	focuses	on	the	interface	in	the	MYIR	Dbus	Library	and	the	dbus	interface	provided
by	Connman,	a	network	management	service.

The	interface	of	MYIR	Dbus	Library	is	also	created	based	on	dbus.	Here	we	directly	introduce
the	interface	of	dbus.	Users	of	library	interface	can	refer	to	the	source	code	mxdbus.	The	dbus
Method	and	Signal	used	in	the	library	can	be	seen	in	the	mxde.xml	file	in	the	_mxdbus	_directory.
During	the	compilation	process,	the	corresponding	QT	signals	and	slots	are	generated.	This
process	can	refer	to	the	source	code.

7.	DBUS	API	Introduction

50

7.1	LED

																<method	name="getLedList">

																				<arg	name="leds"	type="s"	direction="out"/>

																</method>

																<method	name="setLedBrightress">

																				<arg	name="led"	type="s"	direction="in"/>

																				<arg	name="brightness"	type="i"	direction="in"/>

																				<arg	name="result"	type="i"	direction="out"/>

																</method>

																<signal	name="sigLedBrightnessChanged">

																				<arg	name="message"	type="s"	direction="out"/>

																</signal>

Method：

getLedList	Method	of	get	the	name	and	status	of	all	lights	on	the	board

Return：

Name Type Explain Example

leds QString Returns	the	name	and	status	of	all	lights "led1	0	\n	led2	0	\n"

Method：

setLedBrightress	Method	of	set	the	state	of	the	LED

Input：

Name Type Explain Example

led Qstring led	name "led1"

brightness int led	status	0	is	off	1	is	on 1

Return：

Name Type Explain Example

result int Successful	execution	returns	0 0

Signal：

sigLedBrightnessChanged	Signal	of	led	status	has	changed

Return：

7.1	LED

51

Name Type Explain Example

message Qstring The	status	and	name	of	the	light. "led1	1"

7.1	LED

52

7.2	Serial

																<method	name="openSerialPort">

																				<arg	name=	"dev_name"	type="s"	direction="in"/>

																				<arg	name="uart_fd"	type="i"	direction="out"/>

																				<arg	name="tty_configure"	type="s"	direction="out"/>	

																<method	name="closeSerialPort">

																				<arg	name="uart_fd"	type="i"	direction="in"/>

																				<arg	name="result"	type="i"	direction="out"/>

																</method>

																<method	name="setSerialPort">

																				<arg	name="parameter"	type="s"	direction="in"/>	

																				<arg	name="result"	type="i"	direction="out"/>

																</method>

																<method	name="getSerialList">

																				<arg	name="serial_list"	type="s"	direction="out"/>

																</method>

																<method	name="SerialWrite">

																				<arg	name="uart_fd"	type="i"	direction="in"/>

																				<arg	name="data"	type="s"	direction="in"/>

																				<arg	name="size"	type="i"	direction="in"/>

																				<arg	name="result"	type="i"	direction="out"/>

																</method>

																<signal	name="sigSerialRecv">

																				<arg	name="uart_fd"	type="i"	direction="out"/>

																				<arg	name="data"	type="s"	direction="out"/>

																				<arg	name="size"	type="i"	direction="out"/>

																</signal>

Method：

openSerialPort	Method	of	open	the	serial	port

Input：

Name Type Explain Example

dev_name QString Serial	device	name “/dev/ttyO5”

Return：

Name Type Explain Example

uart_fd int
Serial	device	open	handle.	If	the	serial	device
has	been	opened	to	return	0,	then	tty_configure
is	assigned	to	resolve.

4

A	string	consisting	of	a	device	name,	open
handle,	baud	rate,	data	bits,	serial	port	mode, “/dev/ttyO3

7.2	Serial

53

tty_configure QString

handle,	baud	rate,	data	bits,	serial	port	mode,

flow	control,	check	bits,	and	stop	bits	separated
by	spaces

“/dev/ttyO3
4	300	8	0	0
NONE	1”

Method：

closeSerialPort	Method	of	close	the	serial	port	method

Input：

Name Type Explain Example

uart_fd int Open	the	handle	of	the	serial	port 4

Return：

Name Type Explain Example

result int Successful	execution	returns	0 0

Method：

setSerialPort	Method	of	configuring	the	configuration	of	the	serial	port

Input：

Name Type Explain Example

parameter QString

The	serial	port	is	configured	with	a	string	consisting
of	baud	rate,	data	bits,	serial	port	mode,	flow	control,
parity,	and	stop	bits	separated	by	spaces.	Serial	Mode
0	means	RS232	1	means	RS485

“4
115200	8
0	0	78	1”

Return：

Name Type Explain Example

result int Successful	execution	returns	0 0

Method：

getSerialList	Method	of	obtaining	serial	device	on	development	board

Return：

Name Type Explain Example

serial_liast QString Return	a	list	of	serial	devices	on	the	device,
separated	by	spaces.

“/dev/ttyO3
/dev/ttyO4”

7.2	Serial

54

Method：

SerialWrite	Method	serial	device	write	data

Input：

Name Type Explain Example

uart_fd int Open	the	handle	of	the	serial	port 4

data QString Data	string "123456789"

size int Data	length 9

Return：

Name Type Explain Example

result int Successful	execution	returns	0 0

Signal：

sigSerialRecv	Signal	of	serial	device	receives	data

Return：

Name Type Explain Example

uart_fd int Serial	device	handle 4

data QString Serial	device	data	received "123456789"

size int Data	length 9

7.2	Serial

55

7.3	RS485

																<method	name="getRs485List">

																				<arg	name="rs485_list"	type="s"	direction="out"/>

																</method>

Method：

getRs485List	Method	of	get	the	list	of	the	development	board	RS485	devices

Return：

Name Tyep Explain Example

rs485_list QString Return	the	list	of	RS485	devices	on	the	device,
separated	by	a	space.

“/dev/ttyO5
/dev/ttyO6”

The	RS485	configuration	interface	is	the	same	as	the	read-write	interface	and	the	serial	port,	but
when	the	setSerialPort	method	is	called,	the	serial	port	mode	in	the	passed	parameter	should	be	1
RS485	mode.

7.3	RS485

56

7.4	CAN

																<method	name="getCanList">

																				<arg	name="can_list"	type="s"	direction="out"/>

																</method>

																<method	name="openCanPort">

																				<arg	name="can_name"	type="s"	direction="in"/>

																				<arg	name="can_fd"	type="i"	direction="out"/>

																</method>

																<method	name="closeCanPort">

																				<arg	name="can_name"	type="s"	direction="in"/>

																				<arg	name="can_fd"	type="i"	direction="in"/>

																				<arg	name="result"	type="i"	direction="out"/>

																</method>

																<method	name="closeCanLoop">

																				<arg	name="can_name"	type="s"	direction="in"/>

																				<arg	name="can_fd"	type="i"	direction="in"/>

																				<arg	name="result"	type="i"	direction="out"/>

																</method>

																<method	name="setCanPort">

																				<arg	name="can_name"	type="s"	direction="in"/>

																				<arg	name="bitrate"	type="i"	direction="in"/>

																				<arg	name="status"	type="i"	direction="in"/>

																				<arg	name="loop"	type="s"	direction="in"/>

																				<arg	name="ret"	type="i"	direction="out"/>

																				<arg	name="can_configure"	type="s"	direction="out"/>	

																</method>

																<method	name="CanWrite">

																				<arg	name="can_fd"	type="i"	direction="in"/>

																				<arg	name="data"	type="s"	direction="in"/>

																				<arg	name="size"	type="i"	direction="in"/>

																				<arg	name="result"	type="i"	direction="out"/>

																</method>

																<signal	name="sigCanRecv">

																				<arg	name="can_fd"	type="i"	direction="out"/>

																				<arg	name="can_id"	type="i"	direction="out"/>

																				<arg	name="can_dlc"	type="i"	direction="out"/>

																				<arg	name="can_data"	type="s"	direction="out"/>

																</signal>

Method：

getCanList	Method	of	get	a	list	of	CAN	devices	on	the	development	board.

Return：

Name Type Explain Example

7.4	CAN

57

can_list QString Return	the	list	of	CAN	devices	on	the	device,	separated

by	a	space.

“can0

can1”

Method：

openCanPort	Method	of	open	the	CAN	device

Input：

Name Type Explain Example

can_name QString The	name	of	the	CAN	device. “can0”

Return：

Name Type Explain Example

can_fd int CAN	device	opened	handle. 4

Method：

closeCanPort	Method	of	close	CAN	device

Input：

Name Type Explain Example

can_fd int CAN	device	opened	handle. 4

can_name QString The	name	of	the	CAN	device. "can0"

Return：

Name Type Explain Example

result int Successful	execution	returns	0. 0

Method：

closeCanLoop	Method	of	closing	the	loop	mode	of	CAN	device

Input：

Name Type Explain Example

can_fd int CAN	device	opened	handle. 4

can_name QString The	name	of	the	CAN	device. "can0"

Return：

7.4	CAN

58

Name Type Explain Example

result int Successful	execution	returns	0. 0

Method：

setCanPort	Method	of	set	up	a	CAN	device

Input：

Name Type Explain Example

can_name QString The	name	of	the	CAN	device. "can0"

bitrate int Baud	rate. 115200

status int CAN	device	switch	state	Open	1	Close	0. 1

loop QString Set	whether	to	open	loopback	ON	OFF. "OFF"

Return：

Name Type Explain Example

result int
Execution	returns	0	if	the	CAN	device	has	been
opened	and	returns	100.	Can_configure	is	now
assigned	and	parsed.

0

can_configure QString
A	string	consisting	of	space,	separated	by	a
device	name,	opened	handle,	baud	rate,	and
loopback	mode.

“can0	4
20000
OFF”

Method：

CanWrite	Method	of	write	data	to	CAN	device

Input：

Name Type Explain Example

can_fd int CAN	device	opened	handle. 4

data QString Data	string. "123456789"

size int Data	length. 9

Return：：

Name Type Explain Example

result int Successful	execution	returns	0. 0

7.4	CAN

59

Signal：

sigCanRecv	Signal	of	CAN	device	receive	data

Return：

Name Type Explain Example

can_fd int CAN	device	opened	handle. 4

can_id int The	ID	of	the	CAN	data	frame. 0x123

can_dlc int The	length	of	the	CAN	data. 4

can_data QString CAN	data. "0x11	0x22	0x33	0x44"

7.4	CAN

60

7.5	Connman

Connman's	network	management	service	provides	more	dbus	methods	and	signals.	Here	we	only
describe	the	methods	and	signals	used	by	our	MEasy	HMI.

																								<method	name="GetServices">

																												<arg	name="services"	type="a(oa{sv})"	direction="out"/

>

																								</method>

																								<method	name="SetProperty">

																												<arg	name="name"	type="s"	direction="in"/>

																								</method>

																								<signal	name="PropertyChanged">

																												<arg	name="name"	type="s"/>

																												<arg	name="value"	type="v"/>

																								</signal>

																								<signal	name="ServicesChanged">

																												<arg	name="changed"	type="a(oa{sv})"/>

																												<arg	name="removed"	type="ao"/>

																								</signal>

Method：

GetServices	Method	for	obtaining	network	port	service	available	in	current	development	board

Return：

Name Type Explain Example

services “a(oa{sv})” QDBusArgument	class Examples	are	as	follows

array	[

						struct	{

									object	path	"/net/connman/service/ethernet_689e19bc1c84_cable"

									array	[

												dict	entry(

															string	"Type"

															variant																			string	"ethernet"

)

												dict	entry(

															string	"IPv4"

															variant																			array	[

																					dict	entry(

																								string	"Method"

																								variant																												string	"dhcp"

)

7.5	Connman

61

																					dict	entry(

																								string	"Address"

																								variant																												string	"192.168.30.120"

)

																					dict	entry(

																								string	"Netmask"

																								variant																												string	"255.255.255.0"

)

																					dict	entry(

																								string	"Gateway"

																								variant																												string	"192.168.30.1"

)

]

)

						}

]

Method:

SetProperty	Method	of	set	network	port	information

Input：

Name Type Explain Example

name QString Network	port	setting	item	name Examples	are	as	follows

			string	"IPv4.Configuration"

			variant							array	[

									dict	entry(

												string	"Method"

												variant																string	"dhcp"

)

]

Method：

PropertyChanged	Network	port	change	signal

Return：

Name Type Explain Example

name QString Network	port	setting	item	name "IPv4"

value QVariant Set	the	value	of	the	item Examples	are	as	follows

			variant							array	[

7.5	Connman

62

									dict	entry(

												string	"Method"

												variant																string	"dhcp"

)

									dict	entry(

												string	"Address"

												variant																string	"192.168.30.149"

)

									dict	entry(

												string	"Netmask"

												variant																string	"255.255.255.0"

)

]

Signal：

ServicesChanged	Network	port	signal

Return：

Name Type Explain Example

remove ao QDBusArgument	class Examples	are	as	follows

changed a(oa{sv}) QDBusArgument	class Examples	are	as	follows

			array	[

						struct	{

									object	path	"/net/connman/service/ethernet_689e19bc1c84_cable"

									array	[

]

						}

]

			array	[

						object	path	"/net/connman/service/ethernet_689e19bc1c86_cable"				//remove

]

7.5	Connman

63

Appendix	A	Warranty	&	Technical	Support
Services
MYIR	Tech	Limited	is	a	global	provider	of	ARM	hardware	and	software	tools,	design	solutions
for	embedded	applications.	We	support	our	customers	in	a	wide	range	of	services	to	accelerate
your	time	to	market.

MYIR	is	an	ARM	Connected	Community	Member	and	work	closely	with	ARM	and	many
semiconductor	vendors.	We	sell	products	ranging	from	board	level	products	such	as	development
boards,	single	board	computers	and	CPU	modules	to	help	with	your	evaluation,	prototype,	and
system	integration	or	creating	your	own	applications.	Our	products	are	used	widely	in	industrial
control,	medical	devices,	consumer	electronic,	telecommunication	systems,	Human	Machine
Interface	(HMI)	and	more	other	embedded
applications.	MYIR	has	an	experienced	team	and	provides	custom	design	services	based	on	ARM
processors	to	help	customers	make	your	idea	a	reality.

The	contents	below	introduce	to	customers	the	warranty	and	technical	support	services	provided
by	MYIR	as	well	as	the	matters	needing	attention	in	using	MYIR’s	products.

Service	Guarantee

MYIR	regards	the	product	quality	as	the	life	of	an	enterprise.	We	strictly	check	and	control	the
core	board	design,	the	procurement	of	components,	production	control,	product	testing,
packaging,	shipping	and	other	aspects	and	strive	to	provide	products	with	best	quality	to
customers.	We	believe	that	only	quality	products	and	excellent	services	can	ensure	the	long-term
cooperation	and	mutual	benefit.

Price

MYIR	insists	on	providing	customers	with	the	most	valuable	products.	We	do	not	pursue	excess
profits	which	we	think	only	for	short-time	cooperation.	Instead,	we	hope	to	establish	long-term
cooperation	and	win-win	business	with	customers.	So	we	will	offer	reasonable	prices	in	the	hope
of	making	the	business	greater	with	the	customers	together	hand	in	hand.

Delivery	Time

Appendix	Warranty	&	Technical	Support	Services

64

MYIR	will	always	keep	a	certain	stock	for	its	regular	products.	If	your	order	quantity	is	less	than
the	amount	of	inventory,	the	delivery	time	would	be	within	three	days;	if	your	order	quantity	is
greater	than	the	number	of	inventory,	the	delivery	time	would	be	always	four	to	six	weeks.	If	for
any	urgent	delivery,	we	can	negotiate	with	customer	and	try	to	supply	the	goods	in	advance.

Technical	Support

MYIR	has	a	professional	technical	support	team.	Customer	can	contact	us	by	email
(support@myirtech.com),	we	will	try	to	reply	you	within	48	hours.	For	mass	production	and
customized	products,	we	will	specify	person	to	follow	the	case	and	ensure	the	smooth	production.

After-sale	Service

MYIR	offers	one	year	free	technical	support	and	after-sales	maintenance	service	from	the
purchase	date.	The	service	covers:

Technical	support	service

MYIR	offers	technical	support	for	the	hardware	and	software	materials	which	have	provided
to	customers;
To	help	customers	compile	and	run	the	source	code	we	offer;
To	help	customers	solve	problems	occurred	during	operations	if	users	follow	the	user
manual	documents;
To	judge	whether	the	failure	exists;
To	provide	free	software	upgrading	service.

However,	the	following	situations	are	not	included	in	the	scope	of	our	free	technical	support
service:

Hardware	or	software	problems	occurred	during	customers’	own	development;
Problems	occurred	when	customers	compile	or	run	the	OS	which	is	tailored	by	themselves;
Problems	occurred	during	customers’	own	applications	development;
Problems	occurred	during	the	modification	of	MYIR’s	software	source	code.

After-sales	maintenance	service

Appendix	Warranty	&	Technical	Support	Services

65

The	products	except	LCD,	which	are	not	used	properly,	will	take	the	twelve	months	free
maintenance	service	since	the	purchase	date.	But	following	situations	are	not	included	in	the
scope	of	our	free	maintenance	service:

The	warranty	period	is	expired;
The	customer	cannot	provide	proof-of-purchase	or	the	product	has	no	serial	number;
The	customer	has	not	followed	the	instruction	of	the	manual	which	has	caused	the	damage
the	product;
Due	to	the	natural	disasters	(unexpected	matters),	or	natural	attrition	of	the	components,	or
unexpected	matters	leads	the	defects	of	appearance/function;
Due	to	the	power	supply,	bump,	leaking	of	the	roof,	pets,	moist,	impurities	into	the	boards,
all	those	reasons	which	have	caused	the	damage	of	the	products	or	defects	of	appearance;
Due	to	unauthorized	weld	or	dismantle	parts	or	repair	the	products	which	has	caused	the
damage	of	the	products	or	defects	of	appearance;
Due	to	unauthorized	installation	of	the	software,	system	or	incorrect	configuration	or
computer	virus	which	has	caused	the	damage	of	products.

Warm	tips:

1.	 MYIR	does	not	supply	maintenance	service	to	LCD.	We	suggest	the	customer	first	check
the	LCD	when	receiving	the	goods.	In	case	the	LCD	cannot	run	or	no	display,	customer
should	contact	MYIR	within	7	business	days	from	the	moment	get	the	goods.

2.	 Please	do	not	use	finger	nails	or	hard	sharp	object	to	touch	the	surface	of	the	LCD.

3.	 MYIR	suggests	user	purchasing	a	piece	of	special	wiper	to	wipe	the	LCD	after	long	time
use,	please	avoid	clean	the	surface	with	fingers	or	hands	to	leave	fingerprint.

4.	 Do	not	clean	the	surface	of	the	screen	with	chemicals.

5.	 Please	read	through	the	product	user	manual	before	you	using	MYIR’s	products.

6.	 For	any	maintenance	service,	customers	should	communicate	with	MYIR	to	confirm	the
issue	first.	MYIR’s	support	team	will	judge	the	failure	to	see	if	the	goods	need	to	be
returned	for	repair	service,	we	will	issue	you	RMA	number	for	return	maintenance	service
after	confirmation.

Maintenance	period	and	charges

Appendix	Warranty	&	Technical	Support	Services

66

MYIR	will	test	the	products	within	three	days	after	receipt	of	the	returned	goods	and	inform
customer	the	testing	result.	Then	we	will	arrange	shipment	within	one	week	for	the	repaired
goods	to	the	customer.	For	any	special	failure,	we	will	negotiate	with	customers	to	confirm
the	maintenance	period.

For	products	within	warranty	period	and	caused	by	quality	problem,	MYIR	offers	free
maintenance	service;	for	products	within	warranty	period	but	out	of	free	maintenance
service	scope,	MYIR	provides	maintenance	service	but	shall	charge	some	basic	material
cost;	for	products	out	of	warranty	period,	MYIR	provides	maintenance	service	but	shall
charge	some	basic	material	cost	and	handling	fee.

Shipping	cost

During	the	warranty	period,	the	shipping	cost	which	delivered	to	MYIR	should	be	responsible	by
user;	MYIR	will	pay	for	the	return	shipping	cost	to	users	when	the	product	is	repaired.	If	the
warranty	period	is	expired,	all	the	shipping	cost	will	be	responsible	by	users.

Products	Life	Cycle

MYIR	will	always	select	mainstream	chips	for	our	design,	thus	to	ensure	at	least	ten	years
continuous	supply;	if	meeting	some	main	chip	stopping	production,	we	will	inform	customers	in
time	and	assist	customers	with	products	updating	and	upgrading.

Value-added	Services

1.	 MYIR	provides	services	of	driver	development	base	on	MYIR’s	products,	like	serial	port,
USB,	Ethernet,	LCD,	etc.

2.	 MYIR	provides	the	services	of	OS	porting,	BSP	drivers’	development,	API	software
development,	etc.

3.	 MYIR	provides	other	products	supporting	services	like	power	adapter,	LCD	panel,	etc.
4.	 ODM/OEM	services.

MYIR	Tech	Limited

Address:	Room	04,	6th	Floor,	Building	No.2,	Fada	Road,	Yunli	Smart	Park,	Bantian,	Longgang
District,	Shenzhen,	Guangdong,	China	518129

Support	Email:	support@myirtech.com

Sales	Email:	sales@myirtech.com

Phone:	+86-755-22984836

Appendix	Warranty	&	Technical	Support	Services

67

Fax:	+86-755-25532724

Website:	www.myirtech.com

Appendix	Warranty	&	Technical	Support	Services

68

	Introduction
	1. HMI Framework Introduction
	2. How to use local HMI
	2.1 Serial
	2.2 RS485
	2.3 Ethernet
	2.4 Task Manager
	2.5 MYIR Support
	2.6 System Info
	2.7 Database
	2.8 Camera

	3. Local HMI Application Development
	3.1 Create Development Environment
	3.2 Compiling HMI Applications
	3.3 Running HMI Applications
	3.4 Add Application To HMI

	4. How to use Web HMI
	4.1 Serial
	4.2 RS485
	4.3 Ethernet
	4.4 MYIR support

	5. Web HMI Application Development
	5.1 Add Runtime Library to i.MX6UL Series Boards

	6. MEasy HMI Applications Integration
	6.1 Integrate MEasy HMI Application on i.MX6UL Series Development Boards

	7. DBUS API Introduction
	7.1 LED
	7.2 Serial
	7.3 RS485
	7.4 CAN
	7.5 Connman

	Appendix Warranty & Technical Support Services

